pytorch_tao.plugins.ProgressBar
- class pytorch_tao.plugins.ProgressBar(*fields: Tuple[str], hardware: bool = True, interval: int = 1)
Print training or evaluation progress in terminal. If psutil and pynvml has installed, will also print cpu, memory and gpu memory usage.
- Parameters
fields – the fields value to print
hardware – whether to print hardware usage
interval – interation interval to do the pring
Hooks Hook Point
Logic
EPOCH_STARTED
create a new tqdm instance
ITERATION_COMPLETED(every=interval)
print to the output
import pytorch_tao as tao from pytorch_tao.plugin import ProgressBar model = ... trainer = tao.Trainer() @trainer.train() def _train(images, targets): logits = model(images) loss = F.cross_entropy(logits, targets) return {"loss": loss} trainer.use(ProgressBar("loss"), at="train")
- __init__(*fields: Tuple[str], hardware: bool = True, interval: int = 1)
Methods
__init__
(*fields[, hardware, interval])after_use
()attach
(engine)set_engine
(engine)Attributes